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Does reward positivity encode trial-by-trial reward <

prediction error”? A model-based EEG analysis N
Model Fit:

Ka Chun Wu, Isaac Ip, Fiona Ching, Heytou Chiu, Rosa Chan, Q'b/

. s * LOOIC=5918.53 (compare to 14794.54 of WSLS model)
Bolton K. H. Chau, Savio W. H. Wong, Yetta Kwailing Wong * Posterior predictive check shows good resemblance to real data

: : : : Grand Average ERP:
H lera rCh |Ca| Ba\/ES|an MOde"mg * Significant amplitude differences at RewP time window (270-300ms)
* Enhanced P200 (183-233ms) and P300 (326-426ms) for non-reward feedback

Background

* Human compute the Reward Prediction Error

* RPE is estimated by by hBayesDM package

(RPE), i.e. the discrepancy between the _ - VAT
prediction and actual outcome, and adjust (based on Stan) in R [2] [ e
future behaviour accordingly Reward-Punishment Fictitious Update Model o | il A s

* Reward Positivity, a feedback-locked ERP + a+ = learning rate of reward JEBEUNESRRY 11
sourced from anterior cingulate cortex (ACC), + - = learning rate of punishment I \/; ; S
was thought to encode RPE [1] + = inverse temperature ~

* Current study used a model-based approach . s # T ® = B " B E B =

[ = Indecision point
to explore the effect of RPE on RewP * Replicating results from previous studies [4]
RPE,: — Rt _ Eﬂhﬂsen

Feedback contrast (reward vs. non-reward):
SUbjECt yChosen — yChosen | q+/- . RPE, * No significant cluster is found

RPE contrast (+RPE vs. -RPE):

. I -
THERFSERER hemuty AL QRSN RtWiet <4 vichosen = yinehosen — q*/= . RPE, * Asignificant cluster started at 212-268 (mean beta value = 0.75, 95% ClI [-.001
and 40 1.55], p-value = .04)
* 19 male, 18 female P(Chosen) = 1 * Encompassing frontocentral electrodes ;
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* Probabilistic Reversal Learning (PRL) Task using EEG Analysis
Hebrew characters

Channals

e FEach character has either 85% or 15% chance * Hierarchical Linear Modeling by the LIMO-EEG q . "W m
of getting reward toolbox (EEGLAB plugin) [3] w - | | W
(a picture of a coin) e 1%t|evel analysis: B | ._ |
* 4 blocks (with different character pairs), each * Channel-based GLM estimated by Ordinary Time in s T -
has 120 trials Least Square method

* Feedback types, blocks, and trial-by-trial RPE Discussion
as regressors
« 2nd|evel analysis:

* A more positive RPE predicts a more positive EEG response at frontocentral

750-1250ms o region
* One-sample t-test of condition contrast « However, the corresponding time is earlier than the typical RewP time window,
* Multiple comparison correction which could influence RewP
sooms - using spatiotemporal clustering * The results reveal time windows crucial to RPE computation, which lays
- * Feedback contrast (reward vs. nonreward) DELWeEhOveriapPed FES g NEWE
' * Conclusion: RewP itself did not encode RPE, but is influenced by the
o * RPE contrast (positive RPE vs. negative RPE) computation preceded it
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